type
status
date
slug
summary
tags
category
icon
password
carousel
专著
专著名称 | 出版社 | 作者 | 引用格式 |
桥梁结构智慧监测——理论与实践 | 机械工业出版社 | 淡丹辉 | 淡丹辉. 《桥梁结构智慧监测——理论与实践》. 北京: 机械工业出版社, 2021. ISBN 978-7-111-67713-0 |
复杂索缆体系动力学分析及智慧监测 | 上海科学技术出版社 | 淡丹辉,韩飞,徐斌 | 淡丹辉,韩飞,徐斌.《复杂索缆体系动力学分析及智慧监测》.上海:上海科学技术出版社, 2022. ISBN 978-7-5478-5750-2 |
论文
英文论文
[98] S.J. Jiang, Y.L. Xu, S.M. Li, D.H. Dan, G.Q. Zhang, C. Pei, (2025). Digital twin-based identification of aerodynamic admittance functions of a long-span bridge, Journal of Wind Engineering and Industrial Aerodynamics, Volume 262,2025, 106095, ISSN 0167-6105, https://doi.org/10.1016/j.jweia.2025.106095 . (SCI, Q1, if=4.2)
[97] Danhui Dan, Ruiyang Pan, Zhaowen Kong, Xingfei Yan. (2025). A digital twin model of traffic flow load for full bridge deck geared to analysis of bridge mechanical effects under statistical steady state Structures. V(73), March 2025, 108299. https://doi.org/10.1016/j.istruc.2025.108299 (SCI, Q1, if=2.9)
[96] Asad Khan Mohammad Adil, Danhui Dan, Muhammad Adeel Khan, Mahmood Ahmad , Muhammad Salman Khan, Mohanad Muayad Sabri Sabri. (2024). Assessment of mechanical performance of sustainable structural mud insulated panels. Frontiers in Materials. V11(2024). https://doi.org/10.3389/fmats.2024.1495750 (SCI, Q3, if=2.6)
[95] Linfeng Yu, Shengqiang Ma, Danhui Dan, Wenjie Ma, and Shengwei Chen. (2024). Seismic Performance of the Bridge Piers Reinforced with PP-ECC in the Plastic Hinge Region. International Journal of Structural Stability and Dynamics. 2024, https://doi.org/10.1142/S021945542540019X (SCI, Q2, if=3)
[94] Minyi Di, Danhui Dan*, Xingfei Yan. (2024) Innovative indices of bridge service performance based on bearing reaction monitoring data. Structural Control and Health Monitoring (再修回后录用) (SCI, Q1, if=5.4) (土木学院权威期刊)
[93] Xu, Bin; Wu, Zirao; Casas, Joan; Dan, Danhui. (2024). Automatic assessment of the fatigue life of cables of cable-stayed bridges by on-line monitoring. Structural Concrete. . 2024. https://doi.org/10.1002/suco.202400609 (SCI, Q2, if=3)
[92] Guo-Qing Zhang, You-Lin Xu, Dan-Hui Dan, Shang-Jun Jiang, Qing Zhu.. (2024). Simulation and prediction of vortex-induced vibration of a long suspension bridge using SHM-based digital twin technology. Journal of Wind Engineering & Industrial Aerodynamics. April 2024, Volume 247:105705 https://doi.org/10.1016/j.jweia.2024.105705 (SCI, Q1,if=4.8)
[91] Ruiyang Pan, Danhui Dan*, Gang Zeng, Xingfei Yan. (2024). Monitoring and diagnosis of Bridge Structural performance based on temporal multi-scale divide-and-conquer strategy, Advances in Structural Engineering. https://doi.org/10.1177/13694332241260137 (SCI, Q2,if=2.6)
[90] Dan, D. *; Zeng, G.; Yu, X. Online Collaborative Perception of Full Bridge Deck Driving Visual of Far Blind Area on Suspension Bridge during Vortex-Induced Vibration. Sensors 2024, 24, 1934. https://doi.org/10.3390/s24061934 (SCI, Q2,if=3.9)
[89] Ruiyang Pan, Danhui Dan*, Xingfei Yan. (2024). Interval Uncertainty Identification and Application of Strain Modes in Bridge Structures Based on Monitoring Big Data. International Journal of Structural Stability and Dynamics. (2024)2450277, 2024-1-20, https://doi.org/10.1142/S0219455424502778 (SCI, Q2,if=3.6)
[88] Rui Zhao*, Yuhang Wu, Danhui Dan. (2024). Research on Vehicle‑Induced Vibration of Pedestrian Bridge and Its Application in Comfort Evaluation. International Journal of Steel Structures (2024). https://doi.org/10.1007/s13296-023-00798-0 (SCI, Q4,if=1.5)
[87] Yabiao Jing, Danhui Dan*, Rui Zhao, Shangqiang Ma. (2024). Study of the steady-state response spectrum of bridge structures under statistical steady traffic flow loads. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering. V10(1): 04024001-1~12. https://doi.org/10.1061/AJRUA6.RUENG-1130 (SCI, Q3, if=2.5)
[86] Wenhao Zheng, Dan Danhui*, Jiwen Zhong. (2023). Performance Monitoring of Assembled multi-girder Bridges Based on Displacement Spectrum Similarity Measure. Advances in structural engineering, Advances in Structural Engineering. 2023, Vol. 0(0): 1–15. https://doi.org/10.1177/13694332231223624 (SCI, Q2,if=2.6)
[85] S.J.Jiang, Y.L.Xu*, J.Zhu, G.Q.Zhang, D.H.Dan.(2023).Vortex-induced force identification of a long-span bridge based on field measurement data. Structural Control and Health Monitoring. Volume 2023, Article ID 9361196 https://doi.org/10.1155/2023/9361196 (SCI, Q1, if=5.4) (土木学院权威期刊)
[84] Liangfu Ge; Danhui Dan*; Ayan Sadhu. (2024). A Benchmark Dataset for Vision-based Traffic Load Monitoring in a Cable-stayed Bridge. Journal of Bridge Engineering. 2024. 29(2): p. 04723001. https://doi.org/10.1061/JBENF2.BEENG-6336 , (SCI, Q2, if=3.6)
[83] Wenzhao Wang, Danhui Dan*, Jingqing Gao. (2023). Study on Damage Identification of High-Speed Railway Truss Bridge Based on Statistically Stable Strain Characteristic Function. Engineering Structures. V294(2023):116723. https://doi.org/10.1016/j.engstruct.2023.116723 (SCI, Q1, if=5.5). (土木学院权威期刊)
[82] Wenzhao Wang,Danhui Dan* ,Fangliang Jian. (2023). Study on Strain Characteristic Function for Performance Evaluation of High Speed Railway Steel Truss Bridge. Structures. V55(2023):441-452. https://doi.org/10.1016/j.istruc.2023.05.154 (SCI, Q2, if=4.1)
[81] Liangfu Ge; Danhui Dan*, Ki Young Koo, Yifeng Chen. (2023). An improved system for long-term monitoring of full-bridge traffic load distribution on long-span bridges. Structures. V54(August 2023):1076-1089. https://doi.org/10.1016/j.istruc.2023.05.103 (SCI, Q2, if=4.1).
[80] Xuewen Yu; Danhui Dan*,Liangfu Ge. (2023). Time-Domain Distributed Modal Parameter Identification Based on Mode Decomposition of Single-Channel Vibration Response. Engineering Structures. V15(August, 2023):116323, https://doi.org/10.1016/j.engstruct.2023.116323 (SCI, Q1, if=5.5). (土木学院权威期刊)
[79] Danhui Dan; Gang Zeng; Ruiyang Pan; Pengcheng Yin. (2023). Block-wise recursive sliding variational mode decomposition method and its application on online separating of bridge vehicle-induced strain monitoring signals. Mechanical Systems and Signal Processing. V198 (2023):1103892023-4-19, https://doi.org/10.1016/j.ymssp.2023.110389 (SCI, Q1, if=8.4).
[78] Liangfu Ge, Ki Young Koo, Miaomin Wang, James Brownjohn, Danhui Dan*. (2023). Bridge Damage Detection using Precise Vision-based Displacement Influence Lines and Weigh-in-motion Devices: Experimental Validation. Engineering Structures. V288(2023):116185, https://doi.org/10.1016/j.engstruct.2023.116185 (SCI, Q1, if=5.5). (土木学院权威期刊)
[77] Bin Xu, Haoxiang Yang, Danhui Dan*. (2023). Inversion of dynamic displacement response of cable in the whole field based on single vibration measurement. Mechanical Systems and Signal Processing. V195(2023):110292. https://doi.org/10.1016/j.ymssp.2023.110292 (SCI, Q1, if=8. 4).
[76] Xuewen Yu; Danhui Dan*. (2023). Real-time cable force identification based on block recursive Capon spectral estimation method. Measurement, 2023:112664, https://doi.org/10.1016/j.measurement.2023.112664 . (SCI, Q1, if=5.6).
[75] Xuewen Yu; Danhui Dan*. (2023). Structural modal parameters identification based on 2D spectral analysis. Journal of Sound and Vibration. V552(2023):117638, https://doi.org/10.1016/j.jsv.2023.117638. (SCI, Q1, if=4.7).
[74] Dan Danhui, Wenhao Zheng*, Zhaoyuan Xu. (2023). Research on monitoring index of transverse cooperative working performance of assembled multi-girder bridges based on displacement spectrum similarity measure. Structures. V48(2023):1322-1332, https://doi.org/10.1016/j.istruc.2023.01.023 . (SCI, Q2, if=4.1).
[73] Liao Xia; Dan Danhui*; Han Fei. (2022). Dynamic characteristics analysis method of flexible hanger based on Wittrick-Williams algorithm. Journal of Low Frequency Noise, Vibration and Active Control, V42(2):14613484221141318. https://doi.org/10.1177/14613484221141318 , (SCI, Q2, if=2.3) ●
[72] Dan D, Kong Z. (2022). Bridge vehicle-induced effect influence line characteristic function based on monitoring big data: definition and identification. Structural Health Monitoring. 2022;0(0). doi:10.1177/14759217221139133 (SCI , IF=6.6, Q1).●
[71] Zeng, G., Dan, D.*, Guan, H., & Ying, Y. (2022). Online Intelligent Perception of Front Blind Area of Vehicles on a Full Bridge Based on Dynamic Configuration Monitoring of Main Girders. Sensors, 22(19), 7342. https://doi.org/10.3390/s22197342 (SCI, Q2, if=3.9). ●
[70] Liao, X., Dan, D. *, Han, F., & Zhao, R. (2022). Research on the Dynamic Characteristics of the Double Slings System with Elastic Connection Considering Boundary Conditions. Mathematics, 10(17), 3129. https://doi.org/10.3390/math10173129 , (SCI, Q1, if=2.4) ●
[69] Dan, D.*, Wang, C., Pan, R., & Cao, Y. (2022). Online Sifting Technique for Structural Health Monitoring Data Based on Recursive EMD Processing Framework. Buildings, 12(9), 1312. https://doi.org/10.3390/buildings12091312 , (SCI, Q2, if=3.324). ●
[68] Dan, D.*, & Hao, X. (2023). An automatic real-time cable modal frequency identification and tracking algorithm by combining recursive band-pass filter and recursive Hilbert transform. Mechanical Systems and Signal Processing, 183, 109614. https://doi.org/10.1016/j.ymssp.2022.109614 , (SCI, Q1, if=8.4). ●
[67] Xu, B., Dan, D. *, & Yu, X. (2022). Real-time online intelligent perception of time-varying cable force based on vibration monitoring. Engineering Structures, 270, 114925. https://doi.org/10.1016/j.engstruct.2022.114925 , (SCI, Q1, if=5.5). (土木学院权威期刊) ●
[66] Fei, H.*, Zichen, D., & Danhui, D. (2022). A unified method for in-plane vibration analysis of double-beam systems with translational springs. Journal of Sound and Vibration, 117042. DIO: 10.1016/j.jsv.2022.117042. (SCI, Q1, if=4.7). ●
[65] Zhao, R., Feng, Z.*, Dan, D., Wu, Y., & Li, X. (2022). Numerical Simulation of CAARC Standard High-Rise Building Model Based on MRT-LBM Large Eddy Simulation. Shock and Vibration, 2022. DIO: 10.1155/2022/1907356, (SCI, Q3,if=1.6 ). ●
[64] Yu, X., & Dan, D. * (2022). Online frequency and amplitude tracking in structural vibrations under environment using APES spectrum postprocessing and Kalman filtering. Engineering Structures, 259, 114175. DIO: 10.1016/j.engstruct.2022.114175, (SCI, Q1, if=5.5). (土木学院权威期刊) ●
[63] Yao, Z., Dan, D. *, Zhao, R., & Ma, S. (2022). Static effect of assembled beam bridge under statistical and stable traffic flow load. Journal of Low Frequency Noise, Vibration and Active Control, 14613484221091074. doi:10.1177/14613484221091074. (SCI, Q2, if=2.3). ●
[62] Zhang, L., Yang, S., Chen, F., Xu, B.*, & Dan, D. (2022, March). Parametric dynamic analysis of a double-hanger system via rigid cross-ties in suspension bridges. In Structures (Vol. 37, pp. 849-857). Elsevier. DIO: 10.1016/j.istruc.2022.01.038, (SCI, Q2, if=4.1). ●
[61] Dan, D., Liao, X., & Han, F.* (2022). Research on the Dynamic Characteristics of Cables Considering the Constraints at Both Ends of the Cables. Applied Sciences, 12(4), 2100. DIO:10.3390/app12042100, (SCI, Q2, if=2.838, JCR 2023 is alarted!). ●
[60] Ge, L., Dan, D.*, Liu, Z., & Ruan, X. (2022). Intelligent simulation method of bridge traffic flow load combining machine vision and weigh-in-motion monitoring. IEEE Transactions on Intelligent Transportation Systems. DIO: 10.1109/TITS.2022.3140276. (SCI, Q1, if=8.5, top 3 期刊). ●
[59] Dan, D.*, & Li, H. (2022). Monitoring, intelligent perception, and early warning of vortex‐induced vibration of suspension bridge. Structural Control and Health Monitoring, 29(5), e2928. DIO: 10.1002/stc.2928, (SCI, if=5.4, Q1, top). (土木学院权威期刊) ●
[58] Han, F.*, Dan, D., Xu, Z., & Deng, Z. (2022). A vibration-based approach for damage identification and monitoring of prefabricated beam bridges. Structural Health Monitoring, 14759217211047899. DIO:10.1177/14759217211047899, (SCI,Q1,if=6.6). ●
[57] Dan, D.*, Ying, Y., & Ge, L. (2021). Digital twin system of bridges group based on machine vision fusion monitoring of bridge traffic load. IEEE Transactions on Intelligent Transportation Systems. DIO: 10.1109/TITS.2021.3130025, (SCI, Q1, if=8.5, top 3 期刊). ●
[56] Wang, Q., & Dan, D.* (2022). A simplified modeling method for multi-particle damper: Validation and application in energy dissipation analysis. Journal of Sound and Vibration, 517, 116528. DIO: 10.1016/j.jsv.2021.116528, (SCI, JCR Q1, if=4.7). ●
[55] Yu, X., & Dan, D. * (2022). Block-wise recursive APES aided with frequency-squeezing postprocessing and the application in online analysis of vibration monitoring signals. Mechanical Systems and Signal Processing, 162, 108063.DIO:10.1016/j.ymssp.2021.108063, (SCI, if=8.4,Q1). ●
[54] Han, F.*, Deng, Z., & Dan, D. (2021). Modelling and analysis framework for nonlinear dynamics of submerged tensioned cables. Ocean Engineering, 232, 109123. DIO:10.1016/j.oceaneng.2021.109123, (SCI, JCR ,Q1, if=4.372). ●
[53] Dan, D., Yu, X., Han, F.*, & Xu, B. (2022). Research on dynamic behavior and traffic management decision-making of suspension bridge after vortex-induced vibration event. Structural Health Monitoring, 21(3), 872-886. DOI: 10.1177/14759217211011582, (SCI , IF=6.6, Q1). ●
[52] Xu, B., Dan, D.*, Han, F., & Zou, Y. (2021). Parameter Identification of Main Cables of Cable Suspension Structures Based on Vibration Monitoring of Cable: Methodology and Experimental Verification. Journal of Structural Engineering, 147(4), 04021023. DOI: 10.1061/(ASCE)ST.1943-541X.0002965, (SCI, if=4.1, Q2). ●
[51] Dan, D., Wang, Q.*, & Gong, J. (2021). Application of coupled multi-body dynamics—discrete element method for optimization of particle damper for cable vibration attenuation. Frontiers of Structural and Civil Engineering, 15(1), 244-252. DIO: 10.1007/s11709-021-0696-x, (SCI, Q1, if=3.0). ●
[50] Xu, Z., Dan, D.*, & Deng, L. (2021). Vibration-based monitoring for transverse cooperative working performance of assembled concrete multi-girder bridge: System design, implementation and preliminary application. International Journal of Structural Stability and Dynamics, 21(03), 2150043. DOI: 10.1142/S0219455421500437, (SCI, Q2, if=2.957).●
[49] Dan, D.*, & Dan, Q. (2021). Automatic recognition of surface cracks in bridges based on 2D-APES and mobile machine vision. Measurement, 168, 108429. DIO: 10.1016/j.measurement.2020.108429, (SCI, if=5.6, Q1). ●
[48] Fei, H.*, Danhui, D., & Zichen, D. (2021). A dynamic stiffness-based modal analysis method for a double-beam system with elastic supports. Mechanical Systems and Signal Processing, 146, 106978. DIO:10.1016/j.ymssp.2020.106978,(SCI, if=8.4,Q1). ●
[47] Fei, H., Zichen, D., & Danhui, D.* (2021). Exact dynamic analysis of multi-segment cable systems. Mechanical Systems and Signal Processing, 146, 107053. DIO: 10.1016/j.ymssp.2020.107053, (SCI, if=8.4, Q1). ●
[46] Ge, L., Dan, D.*, & Li, H. (2020). An accurate and robust monitoring method of full-bridge traffic load distribution based on YOLO-v3 machine vision. Structural Control and Health Monitoring, 27(12), e2636. DIO: 10.1002/stc.2636, (SCI, if=5.4, Q1, top). (土木学院权威期刊) ●
[45] Dan, D., Xu, B., Xia, Y.*, Yan, X., & Jia, P. (2020). Intelligent parameter identification for bridge cables based on characteristic frequency equation of transverse dynamic stiffness. Journal of Low Frequency Noise, Vibration and Active Control, 39(3), 678-689. DIO: 10.1177/1461348418814617 , (SCI, Q2, if=2.3). ●
[44] Fei, H., Zichen, D., & Danhui, D.* (2020). A novel method for dynamic analysis of complex multi-segment cable systems. Mechanical Systems and Signal Processing, 142, 106780. (SCI, if=5.001, Q1). ●
[43] Zhao, Y., Dan, D.*, Yan, X., & Zhang, K. (2020). Cloud monitoring system for assembled beam bridge based on index of dynamic strain correlation coefficient. Smart Structures and Systems, 26(1), 11-21. DIO: 10.12989/sss.2020.26.1.011 , (SCI, if=3.5, Q2). ●
[42] Fei, H., Danhui, D.*, Yiqing, Z., & Huan, L. (2020). Experimental and theoretical study on cable-supporting system. Mechanical Systems and Signal Processing, 140, 106638. DIO: 10.1016/j.ymssp.2020.106638 , (SCI, if=8.4, Q1). ●
[41] Ge, L., Dan, D.*, Yan, X., & Zhang, K. (2020). Real time monitoring and evaluation of overturning risk of single-column-pier box-girder bridges based on identification of spatial distribution of moving loads. Engineering Structures, 210, 110383. DIO: 10.1016/j.engstruct.2020.110383, (SCI, Q1, if=5.5). (土木学院权威期刊) ●
[40] Fei, H., & Danhui, D.* (2020). Free vibration of the complex cable system− An exact method using symbolic computation. Mechanical Systems and Signal Processing, 139, 106636. DIO: 10.1016/j.ymssp.2020.106636 , (SCI, if=8.4, Q1). ●
[39] Fei, H., Deng, Z., & Dan, D.* (2021). Vertical vibrations of suspension bridges: a review and a new method. Archives of Computational Methods in Engineering, 28(3), 1591-1610. DIO: 10.1007/s11831-020-09430-4 , (Q1,中科院Top期刊,if=7.242). ●
[38] Fei, H., Danhui, D.*, Wei, C., & Jubao, Z. (2020). A novel analysis method for damping characteristic of a type of double-beam systems with viscoelastic layer. Applied Mathematical Modelling, 80, 911-928. DIO: 10.1016/j.apm.2019.11.008, (SCI, Q1, if=4.4). (2020年7月15日,同时被遴选为ESI高被引(1%)和HOT论文(0.1%)) ●
[37] Dan, D.*, Yu, X., Yan, X., & Zhang, K. (2020). Monitoring and evaluation of overturning resistance of box girder bridges based on time-varying reliability analysis. Journal of Performance of Constructed Facilities, 34(1), 04019101. DIO: 10.1061/(ASCE)CF.1943-5509.0001375 , (SCI, if=2.5, Q3). ●
[36] Xu, B., Dan, D.*, & Zou, Y. (2019). Accurate identification method and practical formula of suspender tension based on tri-segment suspender dynamic model. Engineering Structures, 200, 109710. DIO: 10.1016/j.engstruct.2019.109710 , (SCI, Q1, if=5.5). (土木学院权威期刊) ●
[35] Xu, B., Dan, D.*, & Zhao, Y. (2019). Frequency-Domain Estimation Method for Vibration-Induced Additional Cable Tension Based on Acceleration Monitoring. Journal of Vibration and Acoustics, 141(6). DIO:10.1115/1.4044673 ,(SCI, if=1.7,Q3). ●
[34] Dan, D.*, Ge, L., & Yan, X. (2019). Identification of moving loads based on the information fusion of weigh-in-motion system and multiple camera machine vision. Measurement, 144, 155-166. DIO:10.1016/j.measurement.2019.05.042 ,(SCI, if=5.6, Q1). ●
[33] Xu, B., Dan, D.*, Zou, Y., & Lei, H. (2019). Research on characteristic function for cable inverse analysis based on dynamic stiffness theory and its application. Engineering Structures, 194, 384-395. DIO:10.1016/j.engstruct.2019.05.062,(SCI, Q1, if=5.5). (土木学院权威期刊) ●
[32] Dan, D.*, Han, F.*, Cheng, W., & Xu, B. (2019). Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Structural Control and Health Monitoring, 26(10), e2435. DIO: 10.1002/stc.2435, (SCI, if=5.4, Q1, top). (土木学院权威期刊) ●
[31] Dan, D.*, Xu, Z., Zhang, K., & Yan, X. (2019). Monitoring index of transverse collaborative working performance of assembled beam bridges based on transverse modal shape. International Journal of Structural Stability and Dynamics, 19(08), 1950086. DIO: 10.1142/S021945541950086X , (SCI, if=3.6, Q2). ●
[30] Han, F.*, Wang, H., & Dan, D. H. (2019, August). Dynamic response of a bridge deck pavement. In Proceedings of the Institution of Civil Engineers-Transport (Vol. 172, No. 4, pp. 221-232). Thomas Telford Ltd. DIO: 10.1680/jtran.17.00009, (SCI, if=0.8, Q4 ). ●
[29] Zheng, W., Dan, D.*, Cheng, W., & Xia, Y. (2019). Real-time dynamic displacement monitoring with double integration of acceleration based on recursive least squares method. Measurement, 141, 460-471. DIO: 10.1016/j.measurement.2019.04.053, (SCI, if=5.6, Q1). ●
[28] Han, F., Dan, D.*, & Cheng, W. (2019). Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer. Composites Part B: Engineering, 163, 272-281. DIO: 10.1016/j.compositesb.2018.11.043 (SCI, IF=13.1, Q1). ●
[27] Dan, D.*, Zhao, Y., Wen, X., & Jia, P. (2019). Evaluation of lateral cooperative working performance of assembled beam bridge based on the index of strain correlation coefficient. Advances in Structural Engineering, 22(5), 1062-1072. DIO: 10.1177/1369433218804924, (SCI, if=2.6,Q2). ●
[26] Han, F., Dan, D.*, Cheng, W., & Jubao, Z. (2018). An improved Wittrick-Williams algorithm for beam-type structures. Composite Structures, 204, 560-566. DIO: 10.1016/j.compstruct.2018.07.108 (SCI, if=6.3, Q1). ●
[25] Dan, D.*, Jia, P., Li, G., & Niu, P. (2018). Experimental study on mechanical and sensing properties of smart composite prestressed tendon. Materials, 11(11), 2087. DIO: 10.3390/ma11112087, (SCI,IF=3.4, Q3). ●
[24] Han, F., Dan, D.*, & Cheng, W. (2018). Extension of dynamic stiffness method to complicated damped structures. Computers & Structures, 208, 143-150. DIO: 10.1016/j.compstruc.2018.07.010, (SCI, if=4.7, Q1). ●
[23] Han, F., Dan, D. H.*, & Yan, X. F. (2018). Dynamic characteristics of a double-layer sheathing cable system based on dynamic stiffness theory. International Journal of Structural Stability and Dynamics, 18(07), 1850096. DIO: 10.1142/S0219455418500967, (SCI, IF=3.6,Q2). ●
[22] Han, F., Dan, D.*, & Cheng, W. (2018). An exact solution for dynamic analysis of a complex double-beam system. Composite Structures, 193, 295-305. DIO: 10.1016/j.compstruct.2018.03.088 (SCI, if=6.3, Q1). ●
[21] Fei, H., Danhui, D.*, Cheng, W., & Jia, P. (2018). Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method. Composite Structures, 185, 584-599. DOI: 10.1016/j.compstruct.2017.11.010, (SCI, if=6.3, Q1). ●
[20] Dan, D. H., Xia, Y., Xu, B., Han, F., & Yan, X. F. (2018). Multistep and multiparameter identification method for bridge cable systems. Journal of Bridge Engineering, 23(1), 04017111. DIO: 10.1061/(ASCE)BE.1943-5592.0001145, (SCI, if=3.6, Q2). ●
[19] Dan-hui, D.*, Xiang-jie, W., Xing-fei, Y., & Cheng, W. (2018). Estimation and Modeling of Fluctuating Wind Amplitude and Phase Spectrum Using APES Algorithm Based on Field Monitored Data. Shock and Vibration, 2018. DIO: 10.1155/2018/6038159, (SCI, if=1.6, Q3). ●
[18] Han, F.*, Dan, D. H., & Wang, H. (2018). A study on dynamic amplification factor and structure parameter of bridge deck pavement based on bridge deck pavement roughness. Advances in Civil Engineering, 2018. DIO: 10.1155/2018/9810461, (SCI,if=1.8, Q3). ●
[17] Wen, X., Lei, W., Dan, D.*, & Liu, G. (2017). Study on a measurement index of transverse collaborative working performance of prefabricated girder bridges. Advances in Structural Engineering, 20(12), 1879-1890. DOI: 10.1177/1369433217700422. (SCI, if=2.6, Q2). ●
[16] Wang, X., Dan, D.*, Xiao, R., & Yan, X. (2017). Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor. Frontiers of Structural and Civil Engineering, 11(3), 286-292. DIO: 10.1007/s11709-017-0415-9 (SCI, if=3.0, Q2). ●
[15] Dan, D. H.*, Gong, J. X., Sun, L. M., & Cheng, W. (2016). Damping estimation by 2D dr_APES and its application to a real cable-stayed bridge. International Journal of Structural Stability and Dynamics, 16(05), 1550002. DOI: 10.1142/S0219455415500029, (SCI, if=3.6, Q2). ●
[14] Dan, D.*, Cheng, W., Sun, L., & Guo, Y. (2016). Fatigue durability study of high density polyethylene stay cable sheathing. Construction and Building Materials, 111, 474-481. DIO: 10.1016/j.conbuildmat.2016.02.109, (SCI, if=7.4, Q1). ●
[13] Dan, D. H.*, Xu, B., & Chen, Z. H. (2016). Universal characteristic frequency equation for cable transverse component system and its universal numerical solution. Journal of Engineering Mechanics, 142(4), 04015105. DIO:10.1061/(ASCE)EM.1943-7889.0001020 (SCI, if=3.3, Q2). ●
[12] Dan, D.*, Xu, B., Huang, H., & Yan, X. F. (2016). Research on the characteristics of transverse dynamic stiffness of an inclined shallow cable. Journal of Vibration and Control, 22(3), 812-825. DOI: 10.1177/1077546314531807, (SCI, IF=2.8, Q2). ●
[11] Dan, D.*, Sun, L., Guo, Y., & Cheng, W. (2015). Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments. Polymers, 7(8), 1564-1576. DIO: 10.3390/polym7081470. (SCI, IF=5.0, Q1). ●
[10] Dan, D.*, Xiao, R., Bai, W., & Wen, X. (2015). Study and design optimization of fiber bragg grating based wind pressure sensor. International Journal of Distributed Sensor Networks, 11(6), 745346. DIO: 10.1155/2015/745346 (SCI, IF=2.3, Q3). ●
[9] Dan, D.*, Chen, Y., & Xu, B. (2015). A PSO driven intelligent model updating and parameter identification scheme for cable-damper system. Shock and Vibration, 2015. DIO: 10.1155/2015/423898, (SCI, if=1.6, Q3). ●
[8] Dan, D.*, Sun, L., Yang, Z., & Xie, D. (2014). The application of a fuzzy inference system and analytical hierarchy process based online evaluation framework to the Donghai Bridge health monitoring system. Smart Struct. Syst, 14(2), 129-144. DIO: 10.12989/sss.2014.14.2.129, (SCI, if=3.5, Q2). ●
[7] Dan, D.*, Chen, Y., & Xiao, R. (2014). Dynamic properties analysis of a stay cable-damper system in consideration of design and construction factors. Earthquake Engineering and Engineering Vibration, 13(2), 317-326. DIO: 10.1007/s11803-014-0233-1, (SCI, if=2.8, Q2). ●
[6] Dan, D.*, Chen, Y., & Yan, X. (2014). Determination of cable force based on the corrected numerical solution of cable vibration frequency equations. Struct. Eng. Mech, 50(1), 37-52. DIO: 10.12989/sem.2014.50.1.037, (SCI, if=2.2, Q3). ●
[5] Dan, D. H.*, Chen, Z. H., & Yan, X. F. (2014). Closed-form formula of the transverse dynamic stiffness of a shallowly inclined taut cable. Shock and Vibration, 2014. DIO: 10.1155/2014/497670, (SCI, if=1.6, Q3). ●
[4] Dan, D.*, Yang, T., & Gong, J. (2014). Intelligent platform for model updating in a structural health monitoring system. Mathematical Problems in Engineering, 2014. DIO: 10.1155/2014/628619, (SCI, if=1.430, Q3, 2023 JCR is hold on ). ●
[3] Dan, D.*, Gong, J., & Zhao, Y. (2014). Damped CAPES 2D spectral estimation for real-valued vibration signals. Shock and Vibration, 2014. DIO: 10.1155/2014/570347, (SCI, if=1.6, Q3). ●
[2] Xiao, R., Dan, D.*, & Cheng, W. (2014). On perturbation solutions for axisymmetric bending boundary values of a deep thin spherical shell. Mathematical Problems in Engineering, 2014. DIO: 10.1155/2014/903861, (SCI, if=1.430, Q3). ●
[1] Dan, D. H.*, Zhao, Y. M., Yang, T., & Yan, X. F. (2013). Health condition evaluation of cable-stayed bridge driven by dissimilarity measures of grouped cable forces. International Journal of Distributed Sensor Networks, 9(10), 818967. DIO: 10.1155/2013/818967, (SCI, if=2.3, Q3). ●
中文论文
[1]马国杰,赵锐,淡丹辉等.基于BP神经网络与BOLL通道的结构监测数据识别修复[J].西南师范大学学报(自然科学版),2023,48(07):11-20.DOI:10.13718/j.cnki.xsxb.2023.07.002.
[2]周慧娟,淡丹辉,许钊源等.基于精细有限元仿真的装配式梁桥铺装层研究[J].现代电子技术,2023,46(05):96-103.DOI:10.16652/j.issn.1004-373x.2023.05.018.
[3]赵锐,杨名扬,淡丹辉.温度场的有限差分计算——以一维温度场为例[J].西南师范大学学报(自然科学版),2023,48(01):90-101.DOI:10.13718/j.cnki.xsxb.2023.01.012.
[4]许天才,马生强,淡丹辉.FRP抗弯加固梁单元开发研究[J].复合材料科学与工程,2022(11):63-71+101.DOI:10.19936/j.cnki.2096-8000.20221128.009.
[5]徐斌,淡丹辉.服役斜拉索疲劳状态的全场域在线实时监测与智慧感知[J].中国公路学报,2022,35(06):158-167.DOI:10.19721/j.cnki.1001-7372.2022.06.013.
[6]邓露,王涛,何钰龙等.车辆轴限对钢筋混凝土桥梁可靠度和加固费用的影响[J].中国公路学报,2020,33(05):92-100.DOI:10.19721/j.cnki.1001-7372.2020.05.008.
[7]邓露,李树征,淡丹辉等.桥梁动态称重技术在中小跨径混凝土梁桥上的适用性研究[J].湖南大学学报(自然科学版),2020,47(03):89-96.DOI:10.16339/j.cnki.hdxbzkb.2020.03.011.
[8]张凯龙,温学磊,淡丹辉.装配式梁桥横向协同工作性能度量指标的研究[J].城市道桥与防洪,2020(02):146-149+17-18.DOI:10.16799/j.cnki.csdqyfh.2020.02.041.
[9]闫兴非,余学文,淡丹辉等.基于可靠度分析的箱梁桥抗倾覆监测与评估[J].上海公路,2019(03):22-27+3-4.
[10]王向杰,淡丹辉,闫兴非等.现场监测脉动风速的APES法幅值谱相位谱估计[J].振动.测试与诊断,2019,39(02):431-437+452.DOI:10.16450/j.cnki.issn.1004-6801.2019.02.030.
[11]韩飞,淡丹辉,赵磊等.一类浅垂度倾斜双梁系统动力特性研究[J].振动工程学报,2019,32(01):140-150.DOI:10.16385/j.cnki.issn.1004-4523.2019.01.016.
[12]周良,闫兴非,赵一鸣等.基于动应变监测的板梁桥铰缝状态安全评估[J].中国市政工程,2018(05):12-14+102-103.
[13]淡丹辉,王向杰,闫兴非等.基于实测的脉动风随机幅值谱模型[J].同济大学学报(自然科学版),2018,46(04):452-457+490.
[14]韩飞,王虎,淡丹辉等.考虑桥面不平整度的铺装层动力响应研究[J].同济大学学报(自然科学版),2017,45(09):1284-1289+1297.
[15]郑文昊,淡丹辉,程纬.0.1με级高分辨率FBG应变传感器的等强度梁标定方法[J].光电子·激光,2017,28(04):365-370.DOI:10.16136/j.joel.2017.04.0245.
[16]淡丹辉,陈艳阳.应用拉索频率方程修正数值解的索力识别方法[J].振动.测试与诊断,2014,34(02):247-253+395.DOI:10.16450/j.cnki.issn.1004-6801.2014.02.017.
[17]淡丹辉,陈艳阳,肖容.考虑设计和实施因素的拉索阻尼器系统优化问题研究[J].振动工程学报,2014,27(02):246-254.DOI:10.16385/j.cnki.issn.1004-4523.2014.02.015.
[18]淡丹辉,赵一鸣,陈艳阳.拉索-阻尼器体系振动索力测量法研究[J].振动与冲击,2013,32(16):123-127+204.DOI:10.13465/j.cnki.jvs.2013.16.025.
[19]淡丹辉,陈艳阳.阻尼器对频率法拉索索力测量的影响[J].振动.测试与诊断,2013,33(04):676-681+728.DOI:10.16450/j.cnki.issn.1004-6801.2013.04.023.
[20]淡丹辉,赵一鸣,杨通等.基于群索索力相异测度的斜拉桥健康状态评估[J].同济大学学报(自然科学版),2013,41(06):826-833.
[21]淡丹辉,杨通.基于影响矩阵及粒子群算法的斜拉桥自动调索[J].同济大学学报(自然科学版),2013,41(03):355-360.
[22]王淑,任慧,云霄等.通航桥梁主动防船撞系统及其性能分析[J].中国公路学报,2012,25(06):94-100.DOI:10.19721/j.cnki.1001-7372.2012.06.015.
[23]陈艳阳,淡丹辉. 拉索频率方程的数值求解及其工程应用[C]//中国公路学会.全国斜拉桥关键技术论文集(2012).全国斜拉桥关键技术论文集(2012),2012:236-242.
[24]张鹏,淡丹辉.实索振动试验中最低测点位置的初步研究[J].山西建筑,2010,36(26):282-283.DOI:10.13719/j.cnki.cn14-1279/tu.2010.26.041.
[25]闵志华,孙利民,淡丹辉.影响斜拉桥模态参数变化的环境因素分析[J].振动与冲击,2009,28(10):99-105+228.DOI:10.13465/j.cnki.jvs.2009.10.022.
[26]闵志华,孙利民,淡丹辉.台风下斜拉桥风致振动和动力特性分析[J].同济大学学报(自然科学版),2009,37(09):1139-1145+1173.
[27]闵志华,孙利民,孙智等.环境激励下基于小波变换和奇异值分解的结构模态参数识别[J].振动工程学报,2009,22(02):142-149.DOI:10.16385/j.cnki.issn.1004-4523.2009.02.006.
[28]闵志华,孙利民,孙智等.基于小波变换和奇异值分解的模态参数识别方法[J].同济大学学报(自然科学版),2009,37(04):460-465.
[29]淡丹辉,孙利民.结构动力有限元的模态阻尼比单元阻尼建模法[J].振动、测试与诊断,2008(02):100-103+178.DOI:10.16450/j.cnki.issn.1004-6801.2008.02.006.
[30]淡丹辉,孙利民. 大型桥梁健康监测系统的实践与展望[C]//中国公路学会.第四届全国公路科技创新高层论坛论文集[下卷].第四届全国公路科技创新高层论坛论文集[下卷],2008:254-260.
[31]淡丹辉,孙利民.结构动力有限元分析的阻尼建模及评价[J].振动与冲击,2007(02):121-123+137+181.DOI:10.13465/j.cnki.jvs.2007.02.030.
[32]孙汝蛟,孙利民,孙智等.一种新型光纤布喇格光栅振动传感器研究[J].光子学报,2007(01):63-67.
[33]淡丹辉,孙利民.结构损伤有限元建模中的阻尼问题研究[J].工程力学,2006(09):48-54.
[34]肖汝诚,程进,葛耀君等. 桥梁工程篇[C]//建设部工程质量安全监督与行业发展司,中国土木工程学会.工程建设技术发展研究报告.工程建设技术发展研究报告,2006:17-57.
[35]孙利民,孙智,淡丹辉等. 我国大跨度桥梁结构健康监测系统研究与应用现状[C]//中国土木工程学会桥梁及结构工程分会,重庆市建设委员会,重庆市交通委员会.第十七届全国桥梁学术会议论文集(下册).第十七届全国桥梁学术会议论文集(下册),2006:81-88.
[36]庄新伟,淡丹辉,姚伯威.几种阻尼模型的建模方法及评价[J].中国测试技术,2006(02):62-65.
[37]淡丹辉,孙利民.Mamdani型模糊推理系统在桥梁状态评估中的应用[J].同济大学学报(自然科学版),2004(09):1131-1135.
[38]淡丹辉,孙利民.一种推广的互功率谱模态识别法及其在SHM问题中的应用[J].地震工程与工程振动,2004(04):56-61.DOI:10.13197/j.eeev.2004.04.011.
[39]淡丹辉,孙利民.在线监测环境下土木结构的模态识别研究[J].地震工程与工程振动,2004(03):82-88.DOI:10.13197/j.eeev.2004.03.011.
[40]淡丹辉,何广汉.嵌入式智能桥梁结构总体研究(Ⅲ)——结构灾害响应控制系统[J].四川建筑科学研究,2003(04):7-10.
[41]淡丹辉,何广汉.嵌入式智能桥梁结构总体研究(Ⅱ)——自感知监测及自诊断子系统方案规划[J].四川建筑科学研究,2003(03):1-4.
[42]淡丹辉,马德云,何广汉.嵌入式智能桥梁结构总体研究(Ⅰ)——技术现状及总体方案规划[J].四川建筑科学研究,2003(02):3-5.
[43]淡丹辉,何广汉.基于静力的智能桥梁结构智能计算方案的研究[J].桥梁建设,2003(02):8-11.
[44]淡丹辉,郑愚,王绪.一种大型结构试验数据处理系统[J].西南交通大学学报,2003(02):151-153.
[45]淡丹辉,何广汉.基于静力的智能桥梁结构智能计算方案的研究[J].中国铁道科学,2003(02):81-85.
[46]淡丹辉,何广汉.智能桥梁结构的智能计算方案及其初步实现[J].四川建筑科学研究,2002(04):4-6.
[47]淡丹辉,何广汉. 智能土木/桥梁结构的测控硬件解决技术[C]//中国土木工程学会.土木工程与高新技术——中国土木工程学会第十届年会论文集.土木工程与高新技术——中国土木工程学会第十届年会论文集,2002:173-177.
[48]淡丹辉. 智能土木(桥梁)结构理论及其核心算法研究[D].西南交通大学,2002.
[49]淡丹辉,何广汉.基于静态应变测量 桥梁结构传感器优化布置法[J].工程设计CAD与智能建筑,2002(02):53-56.
[50]淡丹辉,何广汉.基于神经计算的智能桥梁结构载荷识别[J].工程设计CAD与智能建筑,2001(12):39-41+60.
[51]淡丹辉,何广汉.智能土木结构理论初探[J].四川建筑科学研究,2001(04):7-9+12.
[52]淡丹辉,罗琼,何广汉.大型结构实验及现场检测数据的可视化技术[J].工程设计CAD与智能建筑,2001(07):43-45.
[53]淡丹辉,何广汉. 基于神经计算的智能桥梁结构载荷识别[C]//中国土木工程学会计算机应用分会,中国建筑学会建筑结构专业委员会计算机应用学组.交通土建及结构工程计算机应用学术研讨会论文集.交通土建及结构工程计算机应用学术研讨会论文集,2001:48-52.
[54]淡丹辉,罗琼,何广汉. 计算机软件技术在大型结构实验及现场检测数据处理中的应用[C]//中国土木工程学会计算机应用分会,中国建筑学会建筑结构专业委员会计算机应用学组.交通土建及结构工程计算机应用学术研讨会论文集.交通土建及结构工程计算机应用学术研讨会论文集,2001:53-56.
[55]淡丹辉,刘山洪,何广汉.基于Win32 API模式的应变仪与PC通讯接口的软件实现[J].信息技术,2001(04):16-19.
[56]淡丹辉,何广汉.钢筋混凝土构件均匀锈蚀与应力的耦合效应分析[J].西南交通大学学报,2001(02):181-184.
[57]淡丹辉,王庆霖.钢筋混凝土结构锈胀裂缝的计算机模拟[J].西南交通大学学报,2000(05):484-487.